- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000004010000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Goering, Max (5)
-
Toro, Tatiana (3)
-
Wilson, Bobby (2)
-
Bortz, Simon (1)
-
Engelstein, Max (1)
-
Fairchild, Samantha (1)
-
Ghinassi, Silvia (1)
-
Weiß, Christian (1)
-
Zhao, Zihui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Goering, Max; Toro, Tatiana; Wilson, Bobby (, ArXiv)
-
Bortz, Simon; Engelstein, Max; Goering, Max; Toro, Tatiana; Zhao, Zihui (, Indiana University Mathematics Journal)
-
Fairchild, Samantha; Goering, Max; Weiß, Christian (, Uniform distribution theory)Abstract We provide an algorithm to approximate a finitely supported discrete measureμby a measureνNcorresponding to a set ofNpoints so that the total variation betweenμandνNhas an upper bound. As a consequence ifμis a (finite or infinitely supported) discrete probability measure on [0, 1]dwith a sufficient decay rate on the weights of each point, thenμcan be approximated byνNwith total variation, and hence star-discrepancy, bounded above by (logN)N−1. Our result improves, in the discrete case, recent work by Aistleitner, Bilyk, and Nikolov who show that for any normalized Borel measureμ, there exist finite sets whose star-discrepancy with respect toμis at most {\left( {\log \,N} \right)^{d - {1 \over 2}}}{N^{ - 1}}. Moreover, we close a gap in the literature for discrepancy in the cased=1 showing both that Lebesgue is indeed the hardest measure to approximate by finite sets and also that all measures without discrete components have the same order of discrepancy as the Lebesgue measure.more » « less
-
Ghinassi, Silvia; Goering, Max (, Archiv der Mathematik)
An official website of the United States government

Full Text Available